
Reuse and Maintenance Practices among Variant
Forks in Three Software Ecosystems

John Businge,∗ Moses Openja,† Sarah Nadi,† and Thorsten Berger§
∗University of Antwerp, Belgium

†SWAT Lab., École Polytechnique de Montréal Montréal,Canada
‡University of Alberta, Edmonton, Canada

§Ruhr University Bochum, Germany

I. PRESENTATION ABSTRACT

With the rise of social coding platforms that rely on
distributed version control systems, software reuse is also on the
rise. Many software developers leverage this reuse by creating
variants through forking, to account for different customer
needs, markets, or environments. Forked variants then form
a so-called software family; they share a common code base
and are maintained in parallel by same or different developers.
As such, software families can easily arise within software
ecosystems, which are large collections of interdependent soft-
ware components maintained by communities of collaborating
contributors. However, little is known about the existence and
characteristics of such families within ecosystems, especially
about their maintenance practices. Improving our empirical
understanding of such families will help build better tools for
maintaining and evolving such families.

Many studies on forking exist, often focusing on the reasons
and outcomes or on the community dynamics as influenced
by forking. The community typically distinguishes between
two kinds of forks: social forks that are created for isolated
development with the goal of contributing back to the mainline
and variant forks that are created for splitting off a new
development branch, often to steer the development into another
direction without intending to contribute back, while leveraging
the mainline project that defines or adheres to some standards.
Variant forks are more relevant for supporting large-scale
software reuse—the focus of this study.

When studying code propagation techniques, existing studies
do not consider the intricacies of git to identify the possible
types of code propagation (e.g., offline git rebasing), but
mainly focus only on pull requests. Furthermore, the few
that have focused both techniques of Git and GitHub, have
ignored propagation techniques that do not preserve commit
IDs (e.g., pull request rebase / squash and Git cherry-picking).
To address these intricacies, in this presentation abstract we
present our where we designed a technique that identifies the
majority of code propagation techniques on Git and GitHub
by leveraging all commit meta data [1]. We also empirically
explored maintenance practices in such fork-based software
families within ecosystems of open-source software. Our focus
is on three of the largest software ecosystems existence today:
Android, .NET, and JavaScript. We investigated two main

research questions: RQ1–What are the characteristics of app
families in our ecosystems? and RQ2–How are software families
maintained and co-evolved in our ecosystems?

The results for RQ1 show that families in fact exist in our
three software ecosystems. We collected 38, 526, and 8,837
families from the Android, .NET and JavaScript ecosystems,
respectively. While both the mainlines and forks have multiple
releases, the number of releases is significantly higher than
those of the forks. Still it indicates that the latter are usually
not one-shot releases; with some having even more than
their mainlines. We also discovered that the majority of the
mainline–fork variant pairs for the three ecosystems are owned
by different developers (91 % for Android variants, 95 % of
JavaScript variants and 92 % of .NET variants). This implies
that the majority of forked variants in our datasets are started
and maintained by developers different from those maintaining
the mainline counterparts.

The results for RQ2 show that in all the studied mainline–fork
variant pairs of the three ecosystems, there are infrequent code
propagation, regardless of the type propagation mechanism or
direction. The most used code propagation technique is git
merge/rebase, which is used in 33 % of Android mainline-
fork pairs, 18 % of .NET pairs, and 11 % of JavaScript pairs.
Integration using git cherry-pick integration technique
is rarely used contributing to 7 % of Android mainline-fork
pairs, 3 % of .NET pairs, and 1 % of JavaScript pairs. For
integration using pull requests, developers often integrate code
in the direction of fork→mainline compared to those in the
direction of mainline→fork, in all the mainline–fork variants.
The code integration in the direction of mainline→fork is
often done using the merge pull request option or git
merge/rebase outside GitHub. Moreover, the squash
and rebase pull request options are less frequently used in
mainline–fork variant pairs, although the squash pull request
option is more used than the rebase pull request option.

Overall, we hope to raise awareness about the existence of
software families within larger ecosystems of software, calling
for further research and better tools support to effectively
maintain and evolve them.

REFERENCES

[1] John Businge, Moses Openja, Sarah Nadi, and Thorsten Berger. Reuse and
maintenance practices among divergent forks in three software ecosystems.
Journal of Empirical Software Engineering, 2021. Accepted.


	Presentation Abstract
	References

