Stack Overflow Posts as Source of Library Features

Camilo Veldzquez-Rodriguez*, Eleni Constantinou’ and Coen De Roover!
Vrije Universiteit Brussel, Belgium, and Eindhoven University of Technology, Netherlands
Email: *cavelazq@vub.be, Te.constantinou@tue.nl, fcderoove @vub.be

It is common in contemporary software development to
reuse functionality from third-party libraries in order to reduce
development time and to improve overall system quality [1].
Each library targets a well-defined domain (e.g., GUI, per-
sistence) and offers functionality to client systems through its
API, facilitating the implementation of a particular task within
the domain (e.g., displaying a dialog, serialising to JSON).
Software ecosystems such as Maven or NPM provide a vast
number of libraries that offer different features for reuse.

When selecting a library to reuse from a vast ecosystem, it
becomes essential for developers to know the features offered
by each library. Kanda et al. [2] consider a set of API methods
with a corresponding name as a feature. We generalise their
definition in this work so that features comprise the API
elements that realise them, and the textual description of the
offered functionality.

To alleviate the absence of descriptions of features of li-
braries, developers often pose questions in Q&A websites like
Stack Overflow! (SO) to get information about how to realise
particular tasks. For example, a post’ asks about possible
ways to delete a directory recursively and a code example
of the Apache Commons IO library is offered as a solution.
Therefore, the solutions on sites like SO can provide a variety
of feature examples that can enhance library documentation,
to enable cross-library comparison by users, and to improve
recommendation tools of third-party libraries.

We present an approach to extracting the functional features
of a library using the library’s JAR files and the SO posts
where it is used. The latter present a unique opportunity for
API mining because of their focus on a particular domain
task, and because of the natural language that surrounds code
snippets. By verifying the API calls in a snippet w.r.t. the API
of the target library, we can ensure the validity of the example.

The approach can form the foundation for exploring an
ecosystem through the features offered by its libraries:

1) Data Collection: Our approach requires that the groupID
and artifactID of at least one version of a library is in
the Maven Central repository. Then, it collects information
about its public API from their published JAR files, and
example usages of this API from SO snippets. A heuristic
based on the tags of the SO answer is used to select code
snippets related to the library under analysis. For each
selected answer, the following information is collected for

Uhttps://stackoverflow.com
Zhttps://stackoverflow.com/questions/779519

subsequent processing: the body of the question, the body
of the answer, and the title.

2) Data Processing: The approach filters out all answers
without a code snippet (e.g., many answers related to the
Weka library). We designed a custom-built island grammar
based on the official Java Language Specification that
is capable of parsing code snippets that are incomplete
or syntactically incorrect. A parser based on this island
grammar extracts the API information we are interested in,
e.g., invocations of both instance and static methods. The
approach uses the information extracted from the public
API of a library to match types (i.e., classes) and methods
that are part of a library.

3) Data Transformation: This step is different depending on
the type of information to transform, i.e., the text or code
from an SO answer. In the case of text attributes such
as the bodies of the question and answer and their title,
the data is cleaned and then a TF-IDF model is trained.
Such a model will allow transforming text into numerical
vectors. The distance between the vectors is calculated
through the cosine metric resulting in a similarity matrix,
e.g., every number d;; in the matrix is the distance between
the vectors ¢ and j. Similarly, for code attributes (i.e., the
original method names, the method names after splitting
camel case, and the API usage itself as extracted by the
island parser) a similarity matrix is obtained through the
Jaccard index.

4) Clustering, selecting and naming: The similarity matrices
obtained in a previous step are the input to a hierarchical
clustering algorithm. A dynamic tree cutting approach is
adopted to select the optimal cutting point in the dendro-
gram. The ideal cluster would be that one in which the
feature is clearly depicted; which might not always be the
case. We use the local outlier factor (LOF) to check the
most common elements within a cluster. From the textual
information, the approach extracts pairs noun-verb or verb-
noun. The most frequent pairs (extracted with LOF) will
form the cluster name.

At BENEVOL, we intend to present our approach, the
results from its evaluation, the limitations we currently have,
and the future avenues our work might take.

REFERENCES

[1] Samuel A. Ajila and Di Wu. 2007. Empirical study of the effects of
open source adoption on software development economics. JSS 80, 9.

[2] Kanda, Tetsuya and Manabe, Yuki and Ishio, Takashi and Matsushita,
Makoto and Inoue, Katsuro. 2013. Semi-Automatically Extracting Fea-
tures from Source Code of Android Applications. TIS E96.D, 12.



