
Automated Recovery of Issue-Commit Links
Leveraging Both Textual and Non-textual Data

Pooya Rostami Mazrae
Software Engineering Lab, University of Mons, Belgium

pooya.rostamimazrae@umons.ac.be

Issues and commits are commonly used during collaborative
distributed development of (mainly open source) projects,
using social coding platforms such as GitHub or GitLab, and
issue and bug tracking systems such as Jira and Bugzilla. Issue
reports mainly focus on requests from end-users or project
contributors for new features, changes in existing functionality,
bug fixes, performance improvements, and so on. Commits
contain source code changes to address these reported issues.

Contemporary social coding platforms such as GitHub aim
to provide integrated support for issues, commits, pull requests
and other kinds of coding activities. For a variety of rea-
sons, many companies and open source project communities
(Mozilla, Apache and OpenStack) continue to use separate
issue trackers, bug trackers and code reviewing systems, even
if their code is hosted on a social coding platform like GitHub.
Issues and bugs are often tracked in other systems such as
Bugzilla, Jira and Storyboard.

When a developer commits a code change, it is good
practice to explicitly mention in the commit message which
issue or bug the commit relates to. Unfortunately, this is
seldomly the case due to deadline pressure, lack of motivation,
etc. Indeed, Ruan et al. [1] quantified the prevalence of missing
issue-commit links based on an analysis of over half a million
GitHub issues, finding that only 42.2% of issues were linked
to corresponding commits.

Recovering issue-commit links is important for improving
bug prediction solutions, bug assignment, feature location
techniques, and other software maintenance tasks. It is also
useful to evaluate maintenance effort and software quality.
Thus, an automated method for recovering links between
commits and their corresponding issues can be of high value.

In this work, we introduce Hybrid-Linker1, a novel approach
to address the aforementioned problem. This work has been
published and presented at ICSME 2021 [2].

We first identify all relevant information from issues and
commits and then perform feature engineering to extract the
most important ones. Hybrid-Linker exploits both textual and
non-textual data from the issues and commits to achieve higher
performance than DeepLink [1] and FRLink [3]. Textual
information includes the issue title, description, commit mes-
sages and code difference. Non-textual information includes
various characteristics such as the issue author, issue type
(bug, feature, task), issue status (open, closed, or resolved),

1https://github.com/MalihehIzadi/hybrid-linker

TABLE I: execution time for each project on our hardware

Project Hybrid-
Linker

DeepLink Project Hybrid-
Linker

DeepLink

Beam 35m 19h Flink 2h 3d
Freemarker 11.5s 30m Airflow 25m 7h

Arrow 35m 6h Netbeans 7m 25d
Ignite 22m 13.5d Isis 28m 23h

Groovy 54m 13h Cassandra 33m 6h
Ambari 4h 7.5d Calcite 31m 6h

the committer and commit time. Incorporating non-textual data
enables Hybrid-Linker to exploit this knowledge when little
textual information is available (e.g., there are no commit
messages), or when there are few similarities between the
description of an issue and the commit message.

We train a hybrid model consisting of two classifier com-
ponents (i.e. non-textual and textual classifiers) and a module
to achieve the best linear composition of these classifiers. The
non-textual component is an ensemble of a Gradient Boosting
model and a XGBoost model. The textual component is
created using TF-IDF word embeddings and a single Gradient
Boosting model.

We evaluated Hybrid-Linker against two baseline methods,
FRLink [3] and DeepLink [1], for 12 Apache projects with
different characteristics. These projects were sampled from
bigger dataset gathered in 20-MAD [4]. Our evaluation results
on these 12 projects show that Hybrid-Linker outperforms FR-
Link [3] and DeepLink [1] in terms of F1-measure by 31.3%,
and 41.3% respectively. Moreover, the proposed approach
shows extensive improvements in terms of required training
time in comparison with the more recent DeepLink method [1]
when using systems with less computational resources. All
our experiments, were performed used a machine with 32GB
memory and a 4-core Intel i7-7700k 4.2G processor. Table I
compares the training time for the selected projects.

REFERENCES

[1] H. Ruan, B. Chen, X. Peng, and W. Zhao, “Deeplink: Recovering issue-
commit links based on deep learning,” Journal of Systems and Software,
vol. 158, p. 110406, 2019.

[2] P. R. Mazrae, M. Izadi, and A. Heydarnoori, “Automated recovery of
issue-commit links leveraging both textual and non-textual data,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2021.

[3] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of missing
issue-commit links by revisiting file relevance,” Information and Software
Technology, vol. 84, pp. 33–47, 2017.

[4] M. Claes and M. V. Mäntylä, “20-mad: 20 years of issues and commits
of mozilla and apache development,” in Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories, 2020, pp. 503–507.

https://github.com/MalihehIzadi/hybrid-linker

	References

