
Watch out for Extrinsic Bugs! A Case Study of
their Impact in Just-In-Time Bug Prediction Models

on the OpenStack project
*Presentation abstract

Gema Rodrı́guez-Perez
University of Waterloo

Waterloo, Canada
gemrodper@gmail.com

Mei Nagappan
University of Waterloo

Waterloo, Canada
mei.nagappan@uwaterloo.ca

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.urjc.es

I. ABSTRACT

In a previous paper [1], we have shown how bugs can be
of different nature: they can be intrinsic or extrinsic bugs.
Intrinsic bugs are bugs that were introduced by one or more
specific changes to the source code. They are bugs for which
a “bug-introducing change” (BIC) can be identified in the
version control system of a software system. In contrast,
extrinsic bugs are bugs that were introduced by changes not
registered in the version control system (e.g., from an external
dependency), or changes in requirement. Therefore, extrinsic
bugs do not have an explicit BIC in the version control system.

Generally, researchers in Just-In-Time (JIT) bug predic-
tion have considered all bugs to be intrinsic bugs. That means,
for each bug analyzed, researchers assumed to be able to
identify a specific change in the control version system that
introduced the bug. This paper [2] shows an example of how
considering the existence of extrinsic bugs can affect software
engineering research. Specifically, we study the impact of
extrinsic bugs in JIT bug prediction by partially replicating a
recent study by McIntosh and Kamei on JIT bug prediction [3].

The main contributions of this paper are: i) over 40% of
bugs in a dataset that was extracted automatically are not
intrinsic bugs; ii) item JIT models obtain different performance
in terms of Area Under the Curve (AUC) (up to 16 percent
AUC points) when they consider only intrinsic bugs; iii)
AUC scores are more stable after removing extrinsic bugs; iv)
mislabeled bugs affect JIT models reducing their performance
up to 4 percent AUC points; and v) Intrinsic and extrinsic
bugs have different code change properties. When analyzing
mislabeled bugs, we found that the nature of extrinsic bugs is
closer to mislabeled than to intrinsic bugs.

We first analyzed whether a manually curated dataset with-
out extrinsic bugs differs from and automatic extracted dataset
(RQ1). We then studied the impact of extrinsic bugs in JIT
models by adding a constraint (i.e., “when extrinsic bugs
are removed”) to McIntosh and Kamei’s original research
questions [3] (RQ2-RQ4). As we found a significant share

of mislabeled bugs in McIntosh and Kamei’s dataset, we also
analyzed the impact of mislabeled bugs (RQ5). Mislabeled
bugs refer to issue reports that have been considered as
bug reports when, in fact, they are not reporting a bug but
another software maintenance activities, e.g., enhancements or
refactoring. Finally, we studied whether intrinsic, extrinsic, and
mislabeled bugs have different characteristics (RQ6).

Our results indicate the negative role that extrinsic bugs
have on the performance of JIT approaches. When removing
extrinsic bugs from the trained data used in OpenStack, JIT
models obtain a more accurate representation of the real world
as indicated by their different (often higher) AUC values in
their performance. These models capture change properties
better. Therefore, JIT models that are fitted only with intrinsic
bugs obtain more stable AUC scores and lose less predictive
power.

We also offer evidence that extrinsic bugs are of different
nature than intrinsic bugs. Actually, they are more similar
to issues that are not bugs than to intrinsic bugs. We think
that this finding is not only relevant for JIT bug prediction
models, but that it may impact many other areas of software
engineering practice and research, and would like to call for
further research on extrinsic bugs. An important implication of
our paper is that researchers and practitioners should be aware
of the data that feed JIT bug prediction models. Although with
the current state of the art data validation might be tedious and
very labor-intensive to achieve, researchers should be aware
that considering extrinsic bugs might impact results.

REFERENCES

[1] G. Rodrı́guez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A.,
German, D. M., and Gonzalez-Barahona, J. M., “How bugs are born:
a model to identify how bugs are introduced in software components”,
Empirical Software Engineering, vol. 25, no 2, p. 1294-1340, Mar 2020.

[2] G. Rodrı́guez-Pérez, M. Nagappan, and G. Robles, “Watch Out for
Extrinsic Bugs! A Case Study of Their Impact in Just-In-Time Bug
Prediction Models on the OpenStack Project,” IEEE Trans. Softw. Eng.,
vol. XX, pp. x–x, September 2020.

[3] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans.
Softw. Eng., vol. 44, no. 5, pp. 412–428, May 2018.


